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Abstract 

 The detection of mild cognitive impairment (MCI), the transitional stage between normal cognitive 

changes of aging and the cognitive decline caused by AD, is of paramount clinical importance, since MCI 

patients are at increased risk of progressing into AD. Electroencephalographic (EEG) alterations in the spectral 

content of brainwaves and connectivity at resting state have been associated with early-stage AD. Recently, 

cognitive event-related potentials (ERPs) have entered into the picture as an easy to perform screening test.   

Motivated by the recent findings about the role of cross-frequency coupling (CFC) in cognition, we 

introduce a relevant methodological approach for detecting MCI based on cognitive responses from a standard 

auditory oddball paradigm. By using the single trial signals recorded at Pz sensor and comparing the responses 

to target and non-target stimuli, we first demonstrate that increased CFC is associated with the cognitive task. 

Then, considering the dynamic character of CFC, we identify instances during which the coupling between 

particular pairs of brainwave frequencies carries sufficient information for discriminating between normal 

subjects and patients with MCI. In this way, we form a multiparametric signature of impaired cognition.          

The new composite biomarker was tested using data from a cohort that consists of 25 amnestic MCI 

patients and 15 age-matched controls. Standard machine-learning algorithms were employed so as to implement 

the binary classification task. Based on leave-one-out cross-validation, the measured classification rate was 

found reaching very high levels (95%). Our approach compares favorably with the traditional alternative of 

using the morphology of averaged ERP response to make the diagnosis and the usage of features from spectro-

temporal analysis of single-trial response. This further indicates that task-related CFC measurements can 

provide invaluable analytics in AD diagnosis and prognosis.  

Keywords: cognitive impairment, ERPs, phase-amplitude coupling, functional connectomics, dynamic 

coordination,dynome, connectomic biomarkers  
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1. Introduction 

Alzheimer's disease (AD) is a neuro-degenerative disorder, characterized by loss of memory and 

declined cognitive and intellectual abilities, that severely affects not only patients' social life but even their daily 

living. Currently, the diagnosis of AD is performed via clinical neuropsychological tests with accuracies ranging 

from 85 – 93 %. However, this widely-used procedure requires long sessions in hospitals and the involvement 

of experienced staff (Paajanen et al., 2014). For this reason, the definition of a reliable, low cost and, preferably, 

non-invasive biomarker for the early diagnosis of AD is an active research area. Towards this end 

electroencephalography (EEG) has been adopted as a potential screening method, since functional alterations 

due to AD most probably are reflected in the recorded cerebral activity of a patient (Ponomareva et al., 2013).  

From the methodological side, the existing approaches fall in either of the two main streams in brain 

signal analysis: spectral and nonlinear dynamics (Dauwels et al., 2010 ; Dauwels et al., 2011). Regarding the 

first and most popular trend,  earlier studies have demonstrated increased brain activity for δ (0.1–4 Hz) and θ 

(4–8Hz) frequency bands and decreased activity for α (8–12 Hz) and β (12–30 Hz) frequency bands in AD 

patients (Cibils, 2002 ; Dauwels et al., 2010). In terms of brain connectivity, a reduced inter-hemispheric 

coherence for both α and β bands has been associated with AD  (Dunkin et al., 1994; Locatelli  et al., 1998). In 

addition to the alterations observed in the characteristics of brainwaves (spectral power and coherence), a 

correlation with the severity of disease has been demonstrated as well (Kowalski, et al., 2001). In a more recent 

study, the quantification of cross-frequency amplitude-to-amplitude modulations during resting-state was 

introduced as a means of differentiating patients with mild AD symptoms from patients with moderate 

symptoms (Fraga et al., 2013).  

Mild cognitive impairment (MCI) is considered as the transitional state between normal cognitive 

decline due to normal aging and the cognitive decay caused by AD. MCI subjects are in general at higher risk 

of suffering from dementia, where an extensive variation in annual conversion rates  to AD was observed in 

many studies ranging from 10.2 to 33.6% % (Espinosa et al.,2013). The neuropathology of MCI may exhibit 

the complex features of the early stages of AD, such as genomic alterations, plaque formation, changes in protein 

metabolism, synaptic dysfunction and cellular injury (Stephan et al., 2012). There are increased research efforts 

to define a methodology for the reliable detection of MCI patients (Young et al., 2013). The timely identification 

of such patients provides the clinicians with the opportunity to organize therapeutic pharmaceutical treatment 

(Doody et al., 2014) or alternative interventions like serious gaming (Bahar-Fuchs et al., 2013; Mosimann et 

al., 2014 ; Tarnanas et al., 2015 ; Muschio et al., 2015) and neurofeedback training (Fernandez et al., 2008 ; 

Frederick et al., 2009 ; Berman and Frederick, 2009 ; Becerra et al., 2012) at the very early stages of the AD, 

well before the neurogenerative processes have pushed the cognitive substrate to the ‘point of no return’. The 

early detection of MCI patients can enhance a positive response to therapy. The last decade different subtypes 

of MCI has been recognized, and a recommended diagnostic strategy is to technically dichotomize the patients 

into those of amnestic type (aMCI) and nonamnestic ones (Winblad, 2004). The aMCI patients form a cohort 
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of particular clinical importance, due to the associated high conversion rate to AD (6 times higher risk than the 

age-matched controls) and the empirical observation of similar neuropathological findings with patients at early 

AD stage (Petersen et al.,1999)  . 

 The majority of MCI patients exhibits, at first, a cognitive decline in episodic memory. Apart from 

related neuropsychological clinical screening tests (e.g. MMSE), various neuroimaging techniques such as 

functional magnetic resonance imaging (fMRI), volumetric magnetic resonance imaging (vMRI) and  positron 

emission tomography (PET) are also employed for the clinical diagnosis of MCI (Patterson et al., 2011 ; Ewers 

et al., 2010). On the contrary, EEG has not been widely incorporated into clinical practice as a diagnostic tool 

for detecting MCI and the rate of subsequent progression to AD. There is however a certain amount of published 

research work (Babiloni et al., 2010 ; Basar et al., 2013). This includes studies of functional connectivity as 

reviewed in (Wen et al. 2015) and a few quantitative EEG (qEEG) studies reporting MCI-related alterations in 

the spectral characteristics of the recorded brain signal (Jelic et al., 2000 ; Moretti et al., 2012).  

 Recently, cognitive ERP studies have gained popularity for understanding and revealing dementive 

disorders (Frodl et al.,2002 ;  Polich and Corey-Bloom, 2005 ; Jackson and Snyder, 2008 ; Papaliagkas et al., 

2008 ; Lai et al., 2010 ; Missonnier et al., 2010 ; Papaliagkas et al., 2011 ; Laskaris et al., 2013), since they can 

target at specific mental faculties (the same that are scrutinized via neuropsychological screening) with the 

additional advantage of leading to directly quantifiable indices. Among the possible experimental designs 

(Olichney et al., 2002 ; Güntekin et al., 2013 ; Gozke et al., 2013), the standard auditory oddball stimulus 

paradigm for Audiroty Event Related Potentials (AERPs) is the simplest to perform. After averaging the brain 

responses from the AERPs when targeting auditory tones, two of the main morphological components (known 

as N200 and P300 based on their polarity and latency) appear deteriorated in the case of MCI patients (Golob 

et al., 2001). P300 is an endogenous brain response that occurs as a positive deflection, roughly, 300 ms after 

the onset of stimulus whenever the subject detects a meaningful task-relevant stimulus (Polich and Corey-

Bloom, 2005). N200 is a faster component that reflects cognitive processes of stimulus evaluation, selective 

attention and conscious discrimination (Patel and Azzam, 2005). Despite the well-recognized difficulty in 

identifying the neurophysiological origin of these deflections (Polish. 2007), the related latency and amplitude 

measurements are considered to suffice for assessing cognitive decline (Muscoso et al., 2006 ; Bennys et al., 

2007 ; Golob et al., 2007 ; Caravaglios et al. 2008). More recently, the characteristics of event-related 

oscillations participating in the AERP response were brought into focus, with promising results regarding the 

clinical evaluation of MCI/AD (Yener and  Başar, 2012 ; Yener et al., 2013). 

 Here, we delve into the event related oscillations and scrutinize further the underlying mechanisms so 

as to identify novel signatures of cognitive impairment. In particular we study the functional interactions 

between distinct brain rhythms, based on traces of oscillatory activity derived by filtering the single-trial 

responses within the standard frequency bands (,,1,2,1,2,1).  The motivation came from the -recently 

established in neuroscience- concept that CFC is a key mechanism for the integration of distinct processes 
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mediated by the distinct brain rhythms, and the rapidly accumulating experimental evidence about its role in 

cognition (Jensen and Colgin, 2007 ; Canolty and Knight, 2010 ; Palva and Palva, 2011 ; Buzsaki and Watson 

2012 ; Jirsa and Muller, 2013 ; Dimitriadis et al., 2015a). Four different types of CFC are usually mentioned 

(Jensen and Colgin, 2007), with each one considering a particular interaction mode (power to power, phase to 

phase, phase to frequency and phase to power) between two distinct brain rhythms. Among these the fourth 

scenario, according to which the amplitude of a brain rhythm is modulated by the phase of a lower-frequency 

rhythm, is the one most often confirmed by experiments (Tort et al., 2008, 2009, 2010 ; Cohen et al., 2009 a, b 

; Colgin et al., 2009 ; Axmacher et al., 2010 a, b ; Voytek et al., 2010).  

For this work, we adopted a phase-to-amplitude (PAC) estimator and quantified the CFC between event-

related oscillations recorded at the Pz electrode during an AERPs paradigm so as to test the hypothesis that the 

cognitive responses in aMCI patients are associated with deviations from a ‘normal’ profile of interactions 

between brain rhythms. For this reason the CFC was measured in the AERPs responses of non-impaired (NI) 

elderly subjects as well. Since there had been no previous work on the particular topic, we followed different 

stages of analysis so as to verify that PAC estimates could lead to potential descriptor(s) of cognitive response 

dynamics and indicators of impairment. First, we examined the CFC in the case of normal subjects and 

demonstrated, by contrasting the responses to target and not-target stimuli, that cognitive responses are 

associated with higher PAC levels. That stage of analysis revealed the transient and multifaceted nature of cross-

frequency interactions that called for sophisticated analysis that could handle the dynamic nature of the 

examined phenomena. Next, we adopted the approach of evolving (i.e. time-varying) patterns of function 

interactions and formulated the search for a PAC-based biomarker as a pattern analytic task. Following a 

statistical learning scheme (that operated towards maximizing the discrimination between the aMCI patients 

and controls), we then selected the time instants and particular frequency-pairs that should be incorporated in 

building an effective biomarker. Finally, we employed a standard classifier so as to quantify the actual 

performance of the proposed PAC-based profile in aMCI detection. In addition, the overall learning scheme 

was repeated using morphological characteristics of the averaged AERP responses and spectro-temporal 

characteristics derived via single-trial analysis. The attempted comparison showed that the introduced approach 

not only provides new insights to the neuronal substrate of impaired cognition, but also outperforms the 

conventional data-analytics employed in ERP analysis. 

The structure of the remaining paper is as follows. Section 2 provides a short description of the methods 

and experimental data. Section 2 introduces the PAC estimator as adopted for the purposes of this work. Section 

3 includes the main results of our study, while some additional results have been appended as supplementary 

material. Section 4 is devoted to the discussion of the results and the future perspectives of this work. 
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2. Materials and methods 

2.1. Subjects 

25 amnestic MCI (aMCI) patients composed the MCI group (mean age ± std = 70±5 years). The elderly 

(control) group consisted of a total of 15 healthy individuals with a similar range of ages to MCI group. Αll the 

participants provided written, informed consent. The subjects were selected over a pool of subjects that visit for 

regular interventions the Day Centre of Greek Association of Alzheimer Disease and Relative Disorders 

(GAADRD). The Ethics Committee of the Greek Association of Alzheimer Disease and Relative Disorders 

approved this study.  

All subjects were  assessed  with  a  standardized  neuropsychological  test  battery and aMCI was 

diagnosed using the following criteria: (1) memory complaint, (2) abnormal memory for age, (3) normal 

activities of daily living, (4) normal general cognitive function, and (5) not demented (Tarnanas et al. 2015). 

Conspicuous brain abnormalities that could account for cognitive decline were excluded using structural 

magnetic resonance imaging (MRI) data. The baseline neuropsychological evaluation covered the following 

cognitive domains: episodic and working memory, attention/psychomotor processing speed, executive function, 

language, and visual-constructive abilities. Impairment was determined if at least one score per domain was 1.5 

SD below group means compared to test-specific normative data (Petersen and Morris, 2005).  The overall 

evaluation typically included one or more composite or global measures of cognitive function such as the Mini-

Mental Status Exam (MMSE), (Folstein et al, 1975) and the Dementia Rating Scale (DRS), (Mattis, 1976). The 

participants were also assessed with conventional neuropsychological tests like Stroop Color-Word Interference 

Test,  Trail-Making Test-B and Digit-span. More complex tasks of executive function were assessed by the 

Wisconsin Card Sorting Test.  Memory assessment was based on the Rey Auditory Verbal Learning Test. 

Visuoconstruction was assessed with tasks like clock drawing.  

Assessment of mood and emotional state is a critical component of the evaluation of the MCI patient as 

emotional distress can cause or exacerbate cognitive problems. The assessment of mood was comprised of 

interview data and responses to brief self-report measures, such as the mini Geriatric Depression Scale. 

Neuropsychological scores for each population are presented  in Table I. 
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Table 1. Means and SDs of demographics and general neuropsychological abilities. 

 

 Older adults (n = 15) aMCI patients (n =25) ANOVA/ANCOVAS 

Depression  

Mini GDS (cut-off 

<2/5) 
.4 (.9) .1 (.3) F < 1 

Global cognition  

MMSE 28.9 (.8) 26.7 (1.6)* F(2, 49) = 83.8*** 
DRS 21.9 (11.9) 42.9 (15.1)* F(2, 49) = 25.8*** 

Executive functions  

WCST 18.8 (8.7) 25.1 (7.9) F(2, 49) = 8.2** 
TMTB-A (s) 45.9 (13.4) 53.1 (24.1) F(2, 49) = 12.9*** 
Stroop 158.4 (119) 66 (48) F(2, 49) = 3.79* 
Forward span 6.1 (.3) 5.3 (1.3)* F(2, 49) = 14.9*** 
Backward span 3.6 (.9) 2.9 (.6)* F(2, 49) = 10.6*** 

Verbal Memory    

Delayed recall 15.9 (.25) 13.3 (1.6)** F(2, 49) = 33.9*** 
Total recall (3 trials) 45.8 (1.3) 32.7 (8.2)*** F(2, 49) = 77.9*** 
Delayed total recall 15.9 (.4) 11.6 (3) F(2, 49) = 95.1*** 
Intrusions 0 1.7 (1.4)** F(2, 49) = 28.1*** 
Perseverations 0 .7 (1.5) F(2, 49) = 9.9*** 
Recognition: hits/false 

recognitions 
15.8 (.5)/(0) 13.5 (1)/1(1) F(2, 49) = 9.75*** 

F(2, 49) = 5.1* 

 

*p < .05, **p < .01, ***p < .001 

 

As individuals age, they may experience changes in their auditory processing and/or cognitive abilities. 

In the present study, a neurologist performed the auditory test to assess the hearing level of both groups. Groups 

didn't differ significantly on the hearing level. 

 

2.2. Recordings 

 The standard auditory oddball paradigm was employed, as summarized below. Participants were 

engaged in a simple discrimination task. Two different tones were sequentially applied. The standard or non-

target stimulus was appearing more often than the target stimulus. The series of tones was presented in 

randomized order, binaurally and at 70 dB sound pressure level (SPL) with a 10 ms rise/fall and a 100 ms 

plateau time. The standard (target) tone was set at 1 kHz (2 kHz) and corresponded to 80% (20%) of the stimuli, 

while the inter-stimulus time interval had been set as 2 sec. The subject's task was to distinguish between the 
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two tones by responding to the targets (via mentally counting them) and not responding to the rest stimuli. 

Participants had been instructed to pay attention in distinguishing the tones, count the target tones silently and 

report the total number at the end of the exam. Only subjects that ''performed reasonably well'', had been 

included in the study. To this end, we included data from participant that reported a number of listened targets 

that deviated less than 3 from the actual number of delivered target tones. In addition, each subject was tested 

twice and the reproducibility of the averaged AERPs response waveform was examined.    

 EEG activity was recorded with a Neuropack 4 (Nihon-Kohden, Tokyo) equipment, after bandpass 

filtering within (0.1–50) Hz, with a sampling frequency fs=1024 Hz from scalp AgCl electrodes at Cz and Pz 

sites according to the 10/20 system referred to linked earlobe electrodes, with a right hand ground. Signals had 

been segmented into single-trial segments of 1 sec duration, lasting from -100 msec to +900 msec with respect 

to stimulus onset. An on-line routine had automatically removed artifact contaminated trials based on extremely 

high amplitude levels. The recording was terminated as soon as a predetermined number of responses to target 

stimuli (30 trials) had been collected. The two types of trials (responses to target and non-target tones) were 

stored as distinct datasets for each subject. An additional artifact trimming step, based on the pattern analytic 

methodology of (Laskaris et al. 1997 ; Laskaris et al. 2001), was introduced so as to exclude any subtler outliers 

missed by the online routine. Additionally, we inspected visually the trials to further diminish any outlier missed 

by both the online routine and the pattern analytic methodology. 

Electrophysiological activity was recorded from two different electrode positions at CZ and PZ but we 

analyzed the trials recorded from Pz. N100, N200 and P300 components are more prominent in PZ compared 

to CZ in an auditory oddball paradigm with counting process (Huang et al., 2011). Moreover, in general ERPs 

and the related components are measured mainly across the midline (FZ,CZ,PZ). Additionally, the N100, N200 

and P300 are often measured mainly at the central (Fz, Cz, Pz) electrode sites with lateral electrodes typically 

not assessed, since the midline scalp distribution provides significant information about the attentional and 

mnestic processes thought to contribute to P300 generation (Donchin et al., 1986; Donchin and Coles, 1988; 

Johnson, 1993; Picton, 1992).  

Mental counting in an auditory oddball paradigm is a demanding task that needs various resources in 

order to be completed like concentration, attention, perception, cognition, and memory. The functional abilities 

and generators of N100, N200, and P300 in the brain have been reported. N100 is involved in general attention, 

and its generator is regarded as the primary auditory cortex (Hillyard et al., 1973 ; Kaga et al., 2004) where the 

most closest sensor in the midline closed to temporal lobe is Pz. P300 is involved in selective attention or 

cognitive ability, and its generators are regarded to be the hippocampus or limbic system and cerebral cortex 

(Donchin et al., 1975, 1986,1988 ; Halgren et al., 1980). N200 is involved in pre-attentive detection and 

superimposed with mismatch negativity and it is a faster component that reflects cognitive processes of stimulus 

evaluation, selective attention and conscious discrimination (Patel and Azzam, 2005).  
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      3. Methods  

 In contemporary neurosciences, the various patterns of oscillatory activity are considered as signatures 

of the cortical networks and key players in brain function by shaping the dynamic substrate of perception, 

memory and consciousness. The oscillatory coupling between distinct neuronal assemblies is postulated as a 

principal mechanism for information exchange and integration (Varela et al., 2001 ; Buzsáki and Draguhn, 2004 

; Buzsaki, 2006). Cross-frequency coupling has recently been established as an additional communication 

channel and provided a novel perspective for characterizing and understanding the long established system of 

brain oscillations (Canolty and Knight, 2010). Among the possible CFC mechanisms, phase-amplitude coupling 

(PAC) is the one most commonly encountered in experimental brain research. Here, PAC is examined among 

the following 7 brain rhythm,  {δ, θ, α1, α2, β1, β2, γ}, defined respectively within the ranges {2-4 Hz;  4-8 Hz; 

8-10Hz; 10-13Hz 13-20 Hz; 20-30Hz, 30- 45Hz}. Among the available PAC estimators, we adopted the one 

based on the phase coherence measure (Cohen, 2008 ; Voytec et al., 2010) and further adapted it so as to operate 

across trials and provide time-resolved profiles of CFC that would be studied in relation with the established 

components of the cognitive response (N2, P300, SW). In the followings, we first introduce the PAC estimator. 

Then, we describe its ''ensemble'' operation mode that is denoted, hereafter, as time-varying PAC (TVPAC). 

Finally, we outline the machine-learning strategy employed for identifying the PAC-features with the highest 

discriminatory power for aMCI detection. The latter methodological step is an important ingredient of this work, 

since our data-driven approach resulted in a multitude of PAC measurements, parameterized by the (possibly-

interacting) pair of brain rhythms and the corresponding time-interval (that the particular functional interactions 

occurred). To derive the oscillatory activity of each brain rhythm, a 3rd order Butterworth filter was applied, in 

zero-phase mode, to concatenate multi-trial responses. After filtering, a segmentation into filtered single-trial 

response was performed. 

                

3.1 PAC estimation:  the basic algorithm 

Described in a more generic setting, let x (t), t=1, 2,.... T is the recorded single-sensor signal at hand. 

Based on filtered versions of this signal, cross-frequency interactions will be sought complying with a form in 

which the phase of low-frequency (LF) oscillations modulates the amplitude of high-frequency (HF) 

oscillations. Using narrowband filtering, the two signals xLF(t) and xHF(t) are first formed and, then, their 

complex analytic representations zLF(t) and zHF(t)  are derived by means of Hilbert transform ( HT[.] ).  

)( i
HF

)( i
HFHFHF

)( i
LF

)( i
LFLFLF

HFHFLFLF e  (t)e (t)z(t)]HT[x(t)z      ,      e (t)e (t)z(t)]HT[x(t)z
tttt

AA


  
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In this way the amplitude and phase dynamics, captured respectively by the envelope A(t) and instantaneous 

phase (t) signal, can be treated independently. Next, the envelope of the higher-frequency oscillations AHF(t) 

is bandpass-filtered within the range of LF oscillations and the resulting signal  undergoes an additional step of 

Hilbert transform so as to isolate its phase-dynamics component '(t)  

 

that reflects the modulation of HF-oscillations amplitude by the phase of the LF-oscillations. The corresponding 

timeseries will be used to estimate PAC, by means of phase-locking (or synchronization index) technique  

    

  

 

Phase-locking value PLV ranges between 0 and 1, with higher values indicating stronger PAC interactions  (i.e. 

higher comodulations).  

[ Fig.1, around here ] 

 Figure 1, demonstrates the previous algorithmic steps using a single-trial ERPs signal from one of the NI 

subjects. PAC interactions are examined, between LF oscillatory response activations corresponding to θ brain 

rhythm and HF activations corresponding to β1 rhythm. The original signal is shown in Fig.1a. The HF version 

of this signal is depicted in Fig.1b, along with its envelope. Just beneath (Fig.1d), is shown the low-pass filtered 

(within θ frequency range) version of the previous envelope (i.e. the Aβ1,θ(t) signal). The overriding, saw-like, 

trace corresponds to its instantaneous phases 'β1(t). On the other hand, the LF version of the original signal is 

depicted in Fig.1c, along with the trace of the corresponding instantaneous phases θ(t). The θ(t) and 'β1(t) 

traces have been plot aligned in Fig.1e, so as to form the instantaneous phase differences as shown in Fig.1f. It 

is this sequence of phase-differences (t) that enters in eq(1) and will be ''integrated'' across time via averaging 

the corresponding directional vectors ei(t) in the complex domain. It becomes clear that the length T of this 

sequence has to be long enough, so as the PLV index to result into a reliable measure of PAC.                   

3.2 Across-trials PAC estimation : the TVPAC estimator  

 To provide a time resolved PAC profile, that would incorporate the event-related CFC interactions which 

occurred systematically during the AERPs experiment, we invoked the standard algorithmic strategy for 

estimating the timecourse of PLV in multi-trial datasets. All the above mentioned steps leading to the time-

integration in eq(1), were performed for every single-trial response xj(t), j=1,...,N available for each subject. 
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Next, the set of derived phase-differences j(t) was formed and, finally,  across-trial ''integration'' was 

performed    

          

 

This resulted in a PAC-trace that had the same temporal resolution as the original single-trials. Considering  the 

low number of trials available for each participant (on average 27 trials), we decided to use a temporal window 

of 2w+1 samples and extend the integration in extracted segments around each latency 

 

 

 

With the scope of avoiding redundancies, the above computations were performed by means of a stepping 

window (with no overlaps between successive segments). In the above equation, this is implied by the time 

index t', that runs over the number of formed segments. Hence, the derived TVPAC-traces were of reduced 

temporal resolution, so as to smooth out unduly variations (in particular, a window corresponding to 20msec 

had been employed). 

[ Fig.2, around here] 

  Figure 2 demonstrates the operation of the employed TVPAC estimator using (in continuation of Fig.1) 

the whole set of single-trial responses of the NI subject. The two panels in first row visualize the computed 

instantaneous phases of θ-rhythm and β1-envelope-related oscillations and the subsequently derived phase 

differences j(t). The TVPLV(t) timeseries computed via eq(2) is shown in Fig.3c. Smoother estimations of 

latency-dependent PAC, computed via eq(3) at varying resolution, are provided in Fig.2d. To ease comparison, 

the corresponding TVPLV(t') sequences have been relatively shifted along y-axis and superimposed on the full-

resolution PAC waveform.    

     

3.3 Handling TVPAC measurements and identifying discriminative events  

For each subject independently the TVPAC profiles were computed for all possible pairs among the 7 

defined brain rhythms. Hence, there were in total ½76 = 21 (LFHF) PAC-related sequences. Each sequence 

consisted of 50 measurements and stored in a vector, the dimensions of which corresponded to distinct latencies 

(i.e. the temporal segments they had come from). The basic form of handling all PLV-measurements was this 

of a [2150] matrix for each subject. An alternative form to represent these measurements was by means of a 
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3D array of size [7750], which corresponded to a time series of connectivity patterns (or graphs). That was 

less economical in terms of memory storage (as the entries corresponding to HFLF interactions had been 

zeroed), but conceptually more fruitful in terms of presentation. With that approach, it become possible to 

visualize multiple cross-frequency interactions at ‘‘latencies-of-interest’’ and detect emergent event-related 

PAC patterns (for instance see Fig.6).  

 To systematize the comparison between aMCI patients and NI subjects, the TVPAC measurements were 

considered as the initial set of extracted features, based on which the classification should be performed and a 

‘‘filtering’’ scheme for selecting the most useful among them was applied. The overall scheme was based on 

matlab routine rankfeatures (with the ‘wilcoxon’ criterion activated), that realized feature ordering based on a 

score measuring class-separability. In more details, for each pair of interacting frequencies and every latency 

the corresponding PLV-measurements for both groups ({aMCI#PLVLF,HF (t’)}i=1:25 , {
NI#PLVLF,HF (t’)}i=1:15 ) were 

gathered as two distinct sets of scalars and then statistically compared by means of wilcoxon rank-sum test that 

resulted in a score, denoted as Wscore, that its higher values indicated more deviating distributions. The use of 

wilcoxon test was motivated by its non-parametric nature and established robustness. The main idea was that 

the selection of important features for aMCI detection would be accomplished by keeping the most 

discriminative ones; in other words, the top-ranked entries from the [21x50] PLV-matrix of each participant. 

The battery of selected PAC measurements would form a composite multifaceted set of feature, based on which 

a biomarker would be built by way of a popular multivariate classifier.   

 Considering the small-sized sample situation of our study (only 40 participants were included) and the 

danger of ‘‘overfitting’’, since we were obliged to optimize feature-selection and then design a classifier using 

the same dataset, we decide to introduce an additional step of bootstrapping (Hastie et al., 2003). During that 

step, by sampling (with replacement) from the available set of 40 PLV matrices, we built 1000 equal-sized 

datasets and repeated the estimation of Wscore for each (LF,HF) pair and latency t’. The consistency of each 

PLV-related feature was measured by the following index   
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Wscore* reflected (inversely) the coefficient of variation for the measurements over the bootstrap samples and 

served as a refined score for ranking the PAC-estimates.  In that way, the reported results (selected frequency 

pairs and latencies) enjoyed a power that was not limited in the particular cohort of 40 participants. More 

importantly, the corresponding bias during the subsequent stage of designing the classifier (based on the selected 

top-ranked features) was reduced.      
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4.Results 

In this section, apart from the main results concerning the introduced biomarker, we have included some 

additional indicative results in order to provide further justification of employing PAC in analysing AERPs 

responses and appreciate its dynamic character. In what follows, only signals recorded at Pz electrode have been 

considered. The section begins with the presentation of the Grand-Averaged responses from the two groups, so 

as to provide an indication about the difficulty of the problem of discrimination between aMCI patients and NI-

controls based on the temporal patterning of the (supposedly) time-locked responses. Then, the emergence of 

PAC as a prominent characteristic of the underlying cognitive processes is demonstrated, by comparing PAC 

measurements from responses to target and non-target stimuli. Next, aMCI is shown to be accompanied by 

aberrations in the response-related mechanisms of CFC. Then the design of biomarker using relevant PAC-

features is presented and its performance is evaluated. Finally, some quantitative comparisons using popular 

alternative descriptors are provided.   

 

4.1 The Event-Related Oscillations and Grand Averaged Responses 

After filtering the single-trial responses within the frequency bands defined for the examined brain 

rhythms, a set of 7 temporal patterns was obtained, for each participant, via ensemble averaging. Figure 3, in 

the first two columns, presents the corresponding within-group averaged responses in a stack-plot format. In 

addition, the corresponding wide-band patterns (after band-pass filtering of single-trials within 1-45Hz) have 

been appended at the bottom of each stack, making easier the identification of the main morphological 

components of AERPs, namely N100, N200, P300 and SW (slow-wave component). It becomes apparent that 

the discrimination between aMCI patients and NI subjects, based on the patterning of (averaged) cognitive 

responses, is not an easy to perform task. To express such a trend in quantitative terms (that in addition would 

facilitate comparisons among the various rhythms), we considered these temporal patterns as set of distinct 

features extracted from each subject (in total 8192=[(7+1) bands  1024 latencies]) and used the wilcoxon score 

to measure its potentiality for aMCI detection. The rightmost column in figure 3 presents the computed Wscore-

measurements in a format fully compatible with the associated temporal patterns. It is evident that each 

oscillatory component shows its own idiosyncrasies which predominantly reflect the corresponding 

characteristic timescale. Furthermore, some morphological components appear as coupled (i.e. time-locked) 

with the discriminability of some particular oscillatory components (for instance SW component coincides with 

an increase/decrease in discriminability of  1/ 2  rhythm). Interestingly, the 1 rhythm is associated with the 

higher Wscores, the temporal profile of which shows a clear modulation from a slower oscillation rhythm. 

Finally, it is worth noting that the discriminabilty in the wide-band filtered signals (see the Wscore profile at 

the bottom) is much lower than in the predefined brain rhythms.  

[ Fig.3, around here] 
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4.2 Contrasting TVPAC measurements from evoked and event-related responses.  

The first step towards the construction of a PAC-related biomarker was to establish that the probed CFC 

phenomena could be, indeed, associated with the examined cognitive processes of the subject performed the 

auditory discrimination task. The inherent experimental design (AERPs, which by-default includes two 

comparable stimulation conditions and requires context-related response), offered a unique opportunity to test 

that. We systematically compared the TVPAC estimates obtained from trials, in which a non-target stimulus had 

been delivered, with the corresponding estimates from trials required from the participant to perform the 

cognitive task (i.e. detection and mental counting).  

[ Fig.4, around here] 

Figure 4, contains results from such a comparison based on the responses from a NI-subject. Firstly, it 

needs to be mentioned here, that during that contrasting-process 2 distinct time series of CFC connectivity 

patterns were originally encountered. In order to facilitate visualization, we employed the following steps. The 

whole set of latency-dependent PLV-values, which had been obtained at full temporal resolution using eq(2), 

was formatted as a 2D matrix of [#frequency-pairs  #latencies] = [211024] size. At every latency t, the mean and the 

maximum of the corresponding 21 PLVs were computed. The resultant temporal-profiles of cross-frequency 

interactions have been included in the middle and bottom panel of Fig.4. They provide only rough summaries 

(of the multitude) of interaction happening during the physical reaction to stimulus and its subsequent 

evaluation. However, by contrasting them between evoked and cognitive responses it becomes clear that an 

increased CFC can be associated with the cognitive aspects of response. A similar behavior was observed in the 

data from other normal subjects well (not shown here). In particular, the profile of maximal instantaneous PLVs 

reflected a waxing and waning behavior that made necessary the disentanglement of cross-frequency interaction, 

carried out as described below.   

The TVPAC measurements for all NI subjects were first assembled and then averaged on a latency-by-

latency basis. Two timeseries of connectivity patterns were formed, representing the dynamics of CFC coupling 

during the response to target and non-target stimuli. They were treated as 3D tensors, and denoted respectively 

as targetGA_PLV and  non-targetGA_PLV.  Based on the grand-averaged responses, we identified the latency-

intervals, shown in Fig.5a, that corresponded to the morphological components of cognitive responses. By 

means of integration within the denoted temporal segments, we estimated a pair of CFC-patterns roughly 

corresponding to the identified components (deflections). We then formed the pattern of relative increase for 

each deflection (N100,P200,P300 and SW) 
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The Relative-Increase pattern consisted of 21 PLV-values indicating the influence of cognitive task in the PAC-

coupling during the time-interval associated with each one of the main AERPs deflections.  

[ Fig.5, around here] 

Figure 5b includes the derived patterns in the form of weighted directed graphs: the nodes correspond to brain 

rhythms and the edges to estimated levels of PAC. The color in each arrow reflects the weight of the 

corresponding edge, that is the Relative-Increase in the strength of LFHF interaction. The depicted snapshots 

of functional connectivity strengthening are clearly suggestive of a positive correlation between CFC and the 

cognitive task. The strongest increase emerged during the P300 deflection and was associated with a α1 

interaction.   

 

4.3 Contrasting TVPAC measurements  from aMCI-patients and NI-subjects.  

Considering the previous observation about the increased CFC associated with cognitive responses, and 

as the next step before introducing the CFC-related biomarker, we proceeded by comparing the TVPAC 

measurements between the patients and the healthy controls, based on their responses to target stimuli. From 

the corresponding 3D tensors of the group-averaged measurements, aMCIGA_PLV and NIGA_PLV, we derived 

patterns of cross-frequency coupling that were associated with the latency-range of the three main deflections 

in the Group-averaged waveforms (N100, N200, P300; as shown in Fig.6a). These connectivity snapshots have 

been presented in tabular format for NI and aMCI groups, respectively, in the first and second row of  Fig.6b. 

The patterns in the last row are reflecting the contrast between the paired-patterns, which has been formulated 

as a relative difference expressing departure from normal behavior           
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        [ Fig.6, around here] 

The  most important observation, that can be made based on Fig.6, is that the CFC differences are neither 

unidirectional nor stable across the different segments. Hence, it is not a straightforward task to craft a biomarker 

based on TVPAC-measurements. Despite this complexity, the level of relative-difference approaches the 30%  

(in both directions), which is much higher than the corresponding difference in the morphology of  grand-

averaged responses (shown in Fig.6a).      
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4.4 The CFC-biomarker : insights into the TVPAC features.  

 Taking into account the observed non-stationarities, we attempted to define a single, though composite, 

biomarker that could encompass the complex dynamics of cross-frequency interactions for the sake aMCI 

detection. Following the machine-learning methodology described in section 3.3, we first identified the most 

discriminative instances of CFC along with the participating brain rhythms. Towards this end, we first derived 

a 3D tensor of Wscore*-values. That tensor was of a size equal with the size of PLV-related tensors (i.e. 

[7×7×50]). The entries of the tensors contained the separability between aMCI and NI participants and were 

parameterized by the interacting frequencies and the temporal segments. To gain some insights into that set of 

measurements, we identified, independently for each segment, the maximal PLV-value (among the 21 included 

in the corresponding connectivity snapshot). The obtained temporal profile has been included in Fig.7a, 

providing additional evidence about the dynamic nature of the PAC-phenomena and the way they deviate 

between healthy and impaired cognition. This temporal perspective was complemented by an interaction-pattern 

perspective, which was derived by estimating the maximum PLV-value across time (i.e. among the set of 

corresponding 50 values) independently for each LFHF interaction. The emergent pattern has been included, 

as a weighted directed graph, in Fig.7b, with edges colored in proportion to the Wscore*. From this graphical 

synopsis of interactions between brain rhythms, two interactions appear to stand-up, namely a θβ1 and β2. 

It is necessary to mention here, that in the particular visualization the interactions have been scored according 

to their importance in the particular task of discriminating between aMCI-patients and NI-subjects, without 

providing any hint about the ''loss'' or ''gain'' in CFC-strength due to cognitive impairment. For this reason, we 

accompanied the above two perspectives with the additional one of evolving-graphs (Fig.7c). Using the patterns 

of relative-difference (derived in analogy with eq(6), but based on particular segments),  from the segments 

corresponding to the 9 maxima in Fig7a (indicated via red discs), we have drawn a sequence of connectivity 

patterns, in which the edge color indicates the relative-difference and, also, its sign. From this timeseries, we 

can specify that the above mentioned θβ1 modulation corresponds to the latencies of SW deflection, while 

the β2 modulation corresponds to the latencies of N200 deflection (see Fig.6a). Both interactions exhibit 

increased strength in the case of aMCI subjects. However, the set of most discriminative interactions includes 

also interactions showing the converse trend. One should notice that  the level of estimated relative-differences, 

now, ranges from 50% decrease to 120% increase and compare it with the level shown in Fig.6b, which 

corresponded to lower-resolution analysis (segments of morphological components).                          

 

[ Fig.7, around here] 

4.5 The CFC-biomarker : design and performance measures.  

 The comparative study between the two groups of participants revealed that in order to fully exploit the 

TVPAC measurements, for the purpose of aMCI detection, it was mandatory to resort to a learning machine. The 
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framework of multivariate classifiers was appropriate for incorporating the derived PLV-values  and 

implementing the discrimination task (aMCI-patients vs NI-subjects). Since the emphasis of this work was put 

on feature-engineering (Bengio et al. 2013), we employed two widely-used classifiers and refrained from further 

improving aMCI detection by means of a more sophisticated classifier. We first experimented with the k-

nearest-neighbor classifier and then with the linear support vector machine (SVM). Since the obtained results 

were slightly better for the latter learning machine, we decided to confine the following presentation 

accordingly.  

 The feature-vectors (FVs) used as input to the SVM consisted of the 30 most discriminative TVPAC-

related characteristics, as identified from the feature-ordering step, which was based on Wscore*. The reader 

can refer to the visualization of Fig.7c, where the most informative among the candidate characteristics  have 

been included. The dimensionality p=30 of the FVs was set experimentally. Starting with the two most 

discriminative PAC-characteristics, namely the PLVθβ1 (870msec) and PLVβ2 (270msec), we continued to 

include features according to their ranks and measuring the performance of the SVM classifier. The classifier 

peaked its performance after including the 30th characteristic and kept behaving equivalently till the 50th one.          

The introduced biomarker was realized via feeding the 30D FVs to the svmtrain and svmclassify 

functions from the statistics and machine learning toolbox of MATLAB. To reliably estimate its performance 

in the task of aMCI detection, we employed two alternative validation schemes, which assessed how the 

biomarker would perform to an independent data set of AERP-responses. The first scheme was the leave-one-

out cross-validation (LOOCV). Each subject, in turn, was considered of unknown classification. By using his 

FV, a diagnosis (impaired or healthy) was attempted, through the SVM classifier. The classifier had been 

previously trained using the FVs of the rest of 39 subjects, who had been considered of known classification. 

By comparing the SVM predictions with the correct labels, we estimated classification accuracy and in addition 

the sensitivity and specificity of the introduced biomarker. The second scheme was a 2-fold cross-validation (2-

CV), that was repeatedly applied as follows. We randomly picked a group of 35 subjects, for whom the 

classification labels were considered to be known (training-set). The remaining 5 subjects formed the second 

fold, for whom the classification labels were considered unknown. An SVM was first trained based on the FVs 

of participants in the training set and, then, used to predict the classification-labels of the participants in  the 

test-set. The SVM predictions were used to assess the performance. The whole procedure was repeated 200 

times and the mean values of accuracy, sensitivity and specificity were finally reported. Table II includes the 

results from both validation schemes.       
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Table. II 

Biomarker performance in aMCI detection - SVM operating on TVPAC characteristics.  

 

  

  

  

  

 

4.6  Comparing with alternative representations.           

As the very last part of this study, we applied the overall machine-learning methodology to 

representations of the cognitive responses obtained via diverse methodological approaches. Starting with an 

initial set of extracted characteristics, we ranked its elements according to the Wscore*-index and selected the 

most discriminative ones as the set of FVs to be fed into a linear SVM so as to achieve the classification between 

aMCI-patients and NI-controls. The achieved classification performance was expressed as in the case of the 

introduced TVPAC-based biomarker.  

   The first utilized representation was based on time-locked averaging (TLA), and included the set of 7 

temporal waveforms (one for each brain rhythm) as extracted characteristics (7×1024). It encapsulated the 

temporal patterning of cognitive response and was well-aligned with the conventional (averaged) format, that 

these responses are encountered in clinical practice. The second examined representation was based on short-

time Fourier transform (STFT) and included the averaged (across-trials) spectrogram. That representation is 

generally considered suitable for incorporating the spectro-temporal profiles of event-related induced 

oscillations. Finally, as an alternative representation suitable for incorporating the multi-scale character and the 

non-stationarities of the response, the averaged scalogram derived via Morlet wavelet transform (WT) was 

examined. The scoring of the involved characteristics in the case of time-locked averaging can be seen in Fig.3c. 

The relevant scoring corresponding to the two transforms has been included as supplementary material. Table 

III presents, in comparative fashion, the accuracy of all the potential biomarkers as this was assessed, via cross-

validation, based on the available data. It should be noticed here that the final number of selected features had 

been optimized independently for each approach (as described is section 4.5). From table III, the superiority of 

the introduced representation (compare first row with the rest ones) becomes evident.  

 

% LOOCV 2-CV 

Accuracy 97.5 95.0 

Sensitivity  100.0  96.0 

Specificity 93.3 93.0 
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        Table. III 

Comparing representations based on the performance of SVM-based aMCI detection.  

 

 

 

 

 

 

 

 

     5. Discussion 

A novel connectomic biomarker for detecting amnestic MCI was introduced, based on time-resolved 

estimates of cross-frequency coupling estimates from single-trial cognitive responses recorded  during an 

ordinary auditory oddball paradigm. It is based on a multiparametric signature of cognitive processes and 

reflects the complex dynamical interactions among brain rhythms that take place during the stimulus evaluation. 

Our experimentations showed a high classification rate (95%) based on the proposed TVPAC features. In 

addition, the superiority of our approach against alternative popular methodologies was demonstrated by 

bringing them within the same learning framework (see Table.III).  The novel concept of dynamic CFC during 

AERPs response is added to the available EEG-related diagnostic tests for cognitive impairment (Henderson et 

al., 2006 ; Lehmann et al., 2007 ; Abasolo et al., 2008 ; Dauwels et al., 2010; Latchoumane et al., 2012 ; Fraga 

et al., 2013 ; Laskaris et al., 2013 ; Tarnanas et al., 2014,2015). 

 

 EEG signals are nonlinear and non-stationary signals and contain oscillatory activity generated by 

different cortical areas. To understand the interactions between brain rhythms of different frequency content, 

EEG signals should be studied in terms of CFC  (Canolty and Knight, 2010). There are four main types of CFC 

as documented in (Jensen and Colgin, 2007) : (i) power to power, (ii) phase to phase, (iii) phase to frequency, 

and (iv) phase to power. There is accumulating evidence that the last form of CFC, the so- called phase-

amplitude modulation –coupling (PAC), occurs very often (Cohen, 2008 ; Osipova et al., 2008 ; Tort et al., 

2008, 2009, 2010 ; Cohen et al., 2008, 2009a,b ; Colgin et al., 2009 ; Axmacher et al., 2010a,b ; Voytek et al., 

2010). It is hypothesized that CFC between different frequency bands within and between sensors is the key 

Accuracy (%) LOOCV 2-CV 

TVPAC 97.5 95.0 

TLA  70  63.5 

STFT 62.5 64.4 

WT 77.5 75.5 
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mechanism for the integration of both local and global processes and hence being related to the uninterrupted 

communication between different brain states expressed within a characteristic frequency band (Canolty and 

Knight, 2010 ; Buzsáki and  Watson, 2012). 

The pivotal role of CFC in neuronal computation, communication and learning has been recently 

demonstrated. In particular, the strength of PAC differs within and across brain areas in relation to task, changes 

rapidly in response to a stimulus (visual and auditory or both), motor and cognitive events and (anti)-correlates 

with performance during learning tasks (Canolty and Knight, 2010).  Thus, CFC might serve as a key 

mechanism of a syntactical organization of communication between brain areas that oscillate on a prominent 

frequency characteristic of a specific cognitive function. Phase orchestrates such communication, while the 

interacting direction (towards the amplitude of a higher frequency rhythm) further supports the idea of 

hierarchical cross-frequency coupling organization (Buzsáki and  Watson, 2012). In a recent study, based on 

normal aging and a short-term memory task, CFC unfolded the inefficient organization of competing brain 

networks and finally indicated the neural mechanism which is responsible for this integration breakdown (Pinal 

et al., 2015). 

PAC phenomena, often mentioned as “nested oscillations”, occur when the amplitude of an oscillation 

at a particular frequency is modulated by the phase of a lower frequency oscillation. This form of CFC has been 

suggested as the key mechanism for, amongst many others significant cognitive functions, working memory 

(Jensen and Lisman, 1998), spatial exploration (Lisman and Buzsaki, 2008) and visual perception (VanRullen 

and Koch, 2003 ; Palva and Palva, 2007). Moreover, it is the cross-frequency coupling between different 

frequency bands that has been hypothesized to be the carrier mechanism for the interaction of local and global 

processes and hence being directly related to the integration of distributed information (Jensen and Muller, 

2013). 

The proposed biomarker exploits the dynamic behavior of the phase-to-amplitude coupling (PAC) 

between frequency pairs (Canolty and Knight, 2010 ; Jensen and Muller, 2013 ; Voytec et al., 2013). There are 

various indications about neural oscillations interacting in a time-varying manner (Buzsáki  and Draguhn, 2004 

; Buzsaki, 2006 ; Buzsáki and  Watson, 2012) . Neural oscillations reflect interactions between the time (phase) 

and the amplitude of oscillatory activity of individual components captured even from a single sensor. Task-

relevant oscillations of different frequency component recorded at a single sensor reflect different cognitive 

functions related to specific local brain areas. Studying CFC in a dynamic fashion while subjects performed a 

task is of significant importance. It is well-known that cortical frequency ranges can form temporal windows in 

neural dynamics (Canolty and Knight, 2010 ; Buzsáki and  Watson, 2010) where the phase of a lower-frequency 

band can modulate the amplitude (power) of a higher frequency. In quasi-stable temporal windows,  this form 

of communication via PAC can be expressed with different frequency pairs which interact accordingly to the 

demands of the task and the cognitive resources that should be accessed to perform the task and to process the 

external stimuli and in general the task.  
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The scope of this work is to introduce a reliable dynamic connectomic biomarker (DCB) for the detection 

of abnormal cognitive declinement due to MCI. To address the prominent non-stationarity of ERP functional 

connectivity and the hierarchical organization of brain rhythms, the adaptation of a dynamic functional 

connectivity approach (Dimitriadis et al., 2010b , 2012 a,b, 2013 a,b , 2015b ; Ioannides et al., 2012 ; Kopell et 

al., 2014)    based on CFC (Canolty and Knight, 2010 ; Buzsáki and  Watson, 2012 ; Dimitriadis et al., 2015a) 

is necessary. The predictive power of the proposed (TICB) was 95% (Dimitriadis, 2015c) and it is the first TICB 

based on CFC biomarker in relation to a brain disease compared to various connectomic biomarkers extracted 

from static graphs (see reviews  Stam et al., 2014 ; Sporns, 2014 ; Braun et al., 2015). A recent study explored 

cross-frequency modulations and revealed a disappearance of δ modulations of β frequency band and an 

appearance of δ modulations in the θ frequency band, both intensified by the severity of the disease (Fraga et 

al., 2013).  

Our approach explored and quantified the multiplexity of the brain in two groups while performing an 

auditory oddball paradigm under the notion of a dynamic CFC approach. The features extracted for the training 

of the classifier were PAC values between frequency pairs at specific time windows that differed between the 

two groups (Fig.7). PAC values can be expressed as basic symbols of the neural syntax implying the efficiency 

or deficiency of coding of the cognitive content during a task-related stimulus (Buzsáki and  Watson, 2012). 

PAC phenomenon can be interpreted as the formation of “packets” of higher frequency waves nested within the 

phase of the slower rhythms. At a quasi-stable  time - window, the number of cycles of the higher frequency 

encapsulated within the phase of the slower frequency and this number is related to the amount of information 

being exchanged between different brain areas oscillating on their prominent frequency. According to the above 

interpretations of results, our approach bears some similarities with symbolic dynamics (Dimitriadis et al., 

2012a ; Dimitriadis et al., 2015b ; Porta et al., 2015). 

The frequency pairs that showed significant higher PAC value for MCI compared to NI group are the  

δ-α2, θ-α2, θ-β1, θ-γ, β1-γ and β2 –γ (Fig.7). Previous studies demonstrated a decreased of δ amplitude in auditory 

tasks for MCI compared to the control group (Yener and  Başar, 2012 ; Βasar et al., 2013 ; Yener et al., 2013 ; 

Kurt et al., 2014). In this context, the higher coupling of δ phase with θ amplitude in MCI subjects can be 

interpreted as an increased attention (Dimitriadis et al., 2010a ; Başar et al., 2013 ; Kurt et al., 2014 ). θ 

oscillations change during attention focusing (Sauseng et al. 2008), while the phase coupling in θ oscillation is 

known to reflect cognitive processes related to memory (Schack et al., 2002). In MCI participants, memory 

information which in general is stored within a distributed θ network , it is coupled with stronger PAC value 

compared to NI group with the amplitude of α2, β1 and γ frequencies showing the higher demands for MCI 

subjects to synchronize memory and attention state (Sauseng et al. 2008 ; Guntekin et al., 2013 ). In a recent 

study, based on recordings from rats Belluscio et al.2012, showed that simultaneous maintenance of multiple 

items in working memory is accompanied by θ:γ phase-amplitude CFC in the hippocampus (Belluscio et al., 

2012). Finally, phase of β sub-bands demonstrated a higher PAC synchronization with γ for MCI compared to 
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NI group demonstrating high demands to shift the system to an attention state as a result of higher working 

memory load related to the counting mentally of the frequent tone. Overall, frequency-pairs that showed higher 

PAC values for MCI compared to the age-matched healthy group can be considered as a higher effort needed 

for MCI patients in order to perform accurately the auditory oddball task and due to overloaded cognitive 

systems related to attention and working memory. This hyper cross-synchronization observed in aMCI group is 

a significant finding of the current study. A previous MEG study where control and MCI group performed a 

memory task higher synchronization values were revealed over the parieto-occipital region in α and β frequency 

bands (Bajo et al., 2012a). Finally, the combination of memory tasks with connectivity analysis can differentiate 

healthy elderly from those with subjective memory complaints (Bajo et al., 2012b).  

The main strengths of the present study are the significant MCI prediction improvement based on the 

proposed DCB, compared to standard techniques, and the single-sensor analysis methodology. Limitations of 

the study are the middle-sized sample of participants and adoption of  an internal cross-validation scheme. 

Future studies will address those issues targeting  a larger sample of MCI subjects, employing  a second one for 

blinded classification and external cross-validation. Finally, a follow-up study for the subjects that progress to 

AD in the next 2 years will be of higher interest in order to explore the validity and the sensitivity of the proposed 

DCB to unfold the functional alterations, the inefficient organization of competing brain networks and the final 

integration breakdown due to the progression of the AD. 

In summary, this study proves that the PAC in cognitive responses may be listed among the known 

functional changes due to mild cognitive impairment. Its quantification, maybe in conjunction with other CFC 

modes as well, can lead to reliable biomarkers. It is definitely worth further investigation, based on extended 

clinical cohorts and longitudinal data, so as to empirically prove that the PAC can serve as the basis of diagnostic 

and prognostic tools.      
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      Captions 
 
 

Fig.1  The algorithmic steps for PAC estimation. Using the first single-trial signal a), from the cognitive 

responses of a control subject, we demonstrate the detection of coupling between θ and β1 rhythm. The time 

series of instantaneous phases from the low-frequency rhythm and its ‘projection’ on the amplitude dynamics 

of the high-frequency rhythm are presented simultaneously in e). The latency depended differences f), will be 

used in estimating the phase-locking that will reflect the PAC-interaction between the two involved brain 

rhythms.       

   
   
Fig.2  Across-trials PAC-estimation.  By repeating the steps shown in the previous figure, the instantaneous 

phase differences for the whole set of  single-trials have been computed a)-b). The TVPAC trace (reflecting 

PLV(t) measurements for θβ1 interaction), at full temporal resolution, is shown c), together with the ensemble 

average waveform (from the wideband signals). TVPAC traces from a stepping window (of various widths) are 

shown in d).        
 
  

Fig.3 An approximation of the temporal patterning of oscillatory cognitive responses by means of Grand 

Averaging. The GA-traces for Non-impaired controls a), and aMCI patients b), have been derived 

independently for each brain rhythm. Using the corresponding temporal patterns from all the 40 participants, 

the separability between aMCI patients and NI controls has been measured at every latency and for each brain 

rhythm. A common scale is used for all the traces within the same stack.      

 

 

 

ig.4. Contrasting the TVPAC profiles from the responses (of an NI subject) to target and non-target 

stimuli. a) The averaged evoked/event-related response is shown in black/blue. b) A rough summary of TVPAC 

measurements estimated by means of averaging across all frequency-pairs (LF,HF), independently for each 

latency. c) A summarizing profile derived by keeping the maximum PLV value at every latency.      
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Fig.5  Contrasting the CFC during responses to target and non-target stimuli based on group-averaged 

data from NI subjects. a) The N100,N200,P300 and SW deflections were first detected in the waveform of 

Grand-Averaged ERPs response. b) Using the corresponding temporal segments, PAC-related connectivity 

snapshots were then derived, for target and non-target stimuli separately, and then used to express the relative 

increase in coupling. A common color scale was used across for all shown graphs.   
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Fig.6 Comparing the level of CFC in cognitive responses, between NI and aMCI participants.  

a) Grand-Averaged waveforms from the cognitive responses (AERPs) of both groups.    

b-c) Group-related (grand-averaged) PAC-connectivity patterns for the temporal-segments corresponding to  

N100,N200 and P300 deflections. d) The corresponding patterns of relative differences, derived so as to express 

deviation from normality; red/blue indicates higher/lower PAC levels in MCI subjects relatively to NI subjects.  

 

 

Fig.7.  Identifying discriminative PAC-interactions (group-level analysis). 

a) The temporal profile of the (quasi-instantaneous) maximal separability measure and the identification of the 

timing of most discriminative PAC couplings.The 9 red discs indicate the local maxima in the timecourse.    
b) A graphical representation of the maximal PAC-couplings (stacked across time) 
c) Snapshots of differences between grand-averaged PAC-patterns, at instances of high discriminability. The 

shown graphs correspond to the 9 segments detected in a). Positive/negative values of Relative-Difference 

indicate higher/lower PAC for the MCI participants relatively to NI participants. To enhance visibility, edges 

associated with a Wscore* lower than 2 are not shown.  
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